Sensors (Aug 2023)

Automatic Detection and Association Analysis of Multiple Surface Defects on Shield Subway Tunnels

  • Ziren Yin,
  • Zhanzhan Lei,
  • Ao Zheng,
  • Jiasong Zhu,
  • Xiao-Zhou Liu

DOI
https://doi.org/10.3390/s23167106
Journal volume & issue
Vol. 23, no. 16
p. 7106

Abstract

Read online

The surface defects on a shield subway tunnel can significantly affect the serviceability of the tunnel structure and may compromise operation safety. To effectively detect multiple surface defects, this study uses a tunnel inspection trolley (TIT) based on the mobile laser scanning technique. By conducting an inspection of the shield tunnel on a metro line section, various surface defects are identified with the TIT, including water leakage defects, dislocation, spalling, cross-section deformation, etc. To explore the root causes of the surface defects, association rules between different defects are calculated using an improved Apriori algorithm. The results show that: (i) there are significant differences in different association rules for various surface defects on the shield tunnel; (ii) the average confidence of the association rule “dislocation & spalling → water leakage” is as high as 57.78%, indicating that most of the water leakage defects are caused by dislocation and spalling of the shield tunnel in the sections being inspected; (iii) the weakest rule appears at “water leakage → spalling”, with an average confidence of 13%. The association analysis can be used for predicting the critical defects influencing structural reliability and operation safety, such as water leakage, and optimizing the construction and maintenance work for a shield subway tunnel.

Keywords