Powders (Jul 2023)
Cu-10 wt.% Al Alloys Produced by Spark Plasma Sintering of Powder Blends and a Mechanically Alloyed Mixture: A Comparative Investigation
Abstract
Cu–Al bronzes are interesting metallic materials, demonstrating higher hardness, higher wear resistance, higher corrosion resistance and a lower friction coefficient as compared with unalloyed copper. The powder metallurgy approach to the fabrication of these alloys presents opportunities to tailor their phase composition and grain size. In the present work, the structural characteristics, phase composition and properties of Cu-10 wt.% Al alloys obtained by spark plasma sintering (SPS) of powder blends and a powder obtained by mechanical alloying (based on Cu(Al) solid solution) are reported. Alloys with different interaction degrees between the metals were obtained by SPS. The blends demonstrated better sinterability than the mechanically alloyed powder: a nearly fully dense alloy was obtained by SPS of the blend at 480 °C, whereas a temperature of 800 °C was necessary to consolidate the mechanically alloyed powder. The hardness and electrical conductivity of the sintered alloys were comparatively analyzed. It was shown that the Cu-10 wt.% Al alloys obtained without the mechanical alloying stage possess hardness and electrical conductivity comparable to those of the alloys obtained from the mechanically milled powder.
Keywords