Applied Sciences (Sep 2020)

An Intelligent and Cost-Efficient Resource Consolidation Algorithm in Nanoscale Computing Environments

  • MeSuk Kim,
  • ALam Han,
  • TaeYoung Kim,
  • JongBeom Lim

DOI
https://doi.org/10.3390/app10186494
Journal volume & issue
Vol. 10, no. 18
p. 6494

Abstract

Read online

Because the Internet of things (IoT) and fog computing are prevalent, an efficient resource consolidation scheme in nanoscale computing environments is urgently needed. In nanoscale environments, a great many small devices collaborate to achieve a predefined goal. The representative case would be the edge cloud, where small computing servers are deployed close to the cloud users to enhance the responsiveness and reduce turnaround time. In this paper, we propose an intelligent and cost-efficient resource consolidation algorithm in nanoscale computing environments. The proposed algorithm is designed to predict nanoscale devices’ scheduling decisions and perform the resource consolidation that reconfigures cloud resources dynamically when needed without interrupting and disconnecting the cloud user. Because of the large number of nanoscale devices in the system, we developed an efficient resource consolidation algorithm in terms of complexity and employed the hidden Markov model to predict the devices’ scheduling decision. The performance evaluation shows that our resource consolidation algorithm is effective for predicting the devices’ scheduling decisions and efficiency in terms of overhead cost and complexity.

Keywords