Remote Sensing (Mar 2022)
Simulation of Soil Organic Carbon Content Based on Laboratory Spectrum in the Three-Rivers Source Region of China
Abstract
Soil organic carbon (SOC) changes affect the land carbon cycle and are also closely related to climate change. Visible-near infrared spectroscopy (Vis-NIRS) has proven to be an effective tool in predicting soil properties. Spectral transformations are necessary to reduce noise and ensemble learning methods can improve the estimation accuracy of SOC. Yet, it is still unclear which is the optimal ensemble learning method exploiting the results of spectral transformations to accurately simulate SOC content changes in the Three-Rivers Source Region of China. In this study, 272 soil samples were collected and used to build the Vis-NIRS simulation models for SOC content. The ensemble learning was conducted by the building of stack models. Sixteen combinations were produced by eight spectral transformations (S-G, LR, MSC, CR, FD, LRFD, MSCFD and CRFD) and two machine learning models of RF and XGBoost. Then, the prediction results of these 16 combinations were used to build the first-step stack models (Stack1, Stack2, Stack3). The next-step stack models (Stack4, Stack5, Stack6) were then made after the input variables were optimized based on the threshold of the feature importance of the first-step stack models (importance > 0.05). The results in this study showed that the stack models method obtained higher accuracy than the single model and transformations method. Among the six stack models, Stack 6 (5 selected combinations + XGBoost) showed the best simulation performance (RMSE = 7.3511, R2 = 0.8963, and RPD = 3.0139, RPIQ = 3.339), and obtained higher accuracy than Stack3 (16 combinations + XGBoost). Overall, our results suggested that the ensemble learning of spectral transformations and simulation models can improve the estimation accuracy of the SOC content. This study can provide useful suggestions for the high-precision estimation of SOC in the alpine ecosystem.
Keywords