Transactions on Fuzzy Sets and Systems (Nov 2022)

Forensic Dynamic Lukasiewicz Logic

  • Antonio Di Nola,
  • Revaz Grigolia

DOI
https://doi.org/10.30495/tfss.2022.1959658.1035
Journal volume & issue
Vol. 1, no. 2
pp. 59 – 71

Abstract

Read online

A forensic dynamic $n$-valued Lukasiewicz logic $FDL_n$ is introduced on the base of $n$-valued Lukasiewicz logic $L_n$ and corresponding to it forensic dynamic $MV_n$-algebra ($FDL_n$-algebra)‎, ‎$1 < n < \omega$‎, ‎which are algebraic counterparts of the logic‎, ‎that in turn represent two-sorted algebras $(\mathcal{M}‎, ‎\mathcal{R}‎, ‎\Diamond)$ that combine the varieties of $MV_n$-algebras $\mathcal{M} = (M‎, ‎\oplus‎, ‎\odot‎, ‎\sim‎, ‎0,1)$ and regular algebras $\mathcal{R} = (R,\cup‎, ‎;‎, ‎^\ast)$ into a single finitely axiomatized variety resemblig $R$-module with‎ ‎"scalar"‎ ‎multiplication $\Diamond$‎. ‎Kripke semantics is developed for forensic dynamic Lukasiewicz logic $FDL_n$ with application to Digital Forensics‎.

Keywords