Medicine in Omics (Aug 2024)
Designing of multi-Epitope vaccine against spike glycoprotein of SARS-CoV-2 using immunoinformatics approach
Abstract
Background: COVID-19 caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome) has created an alarming situation worldwide. The surface (S) glycoprotein of novel coronavirus, encoded by the genome of SARS-CoV-2, plays an role in attachment, fusion as well as entry into the host cell. The spike glycoprotein plays vital role in not only infection but pathogenesis and adaptive immunity, and, therefore, the S glycoprotein is considered as the main target for the development of effective and durable vaccine against SARS-CoV-2. Present study aims to compare the SARS-CoV-2 spike sequence obtained from first Wuhan virus with those of Asian SARS-CoV-2 isolates. Result: A total of 1165 mutations from 657 sequences of Asia submitted in the month of November 2020 to February 2021 were detected. Further, secondary structure prediction followed by protein modeling analysis was performed which revealed, these mutations, considerably altered the stability of Spike protein. Additionally, Physiochemical properties, toxicity, allergenicity and stability of spike glycoprotein were estimated to demonstrate the specificity of the epitope candidates. Subsequently, we identified a total of 34B-cell and 10 T-cell immune epitopes. Among the predicted epitopes, 26 B-cell and 9T-cell epitopes showed non-allergenic, non-toxic and highly antigenic properties. Conclusion: Taken together, our study showed spike glycoprotein of SARS-CoV-2 can be a potentially good candidate for the development of vaccine to curb SARS-CoV-2 infections.