Micromachines (Mar 2023)
PDMS Micropatterns Coated with PDA and RGD Induce a Regulatory Macrophage-like Phenotype
Abstract
Regulatory macrophages (Mreg) are a special cell type that present a potential therapeutic strategy for various inflammatory diseases. In vitro, Mreg generation mainly takes 7–10 days of treatment with chemicals, including cytokines. In the present study, we established a new approach for Mreg generation using a three-dimensional (3D) micropatterned polydimethylsiloxane (PDMS) surface coated with a natural biopolymer adhesive polydopamine (PDA) and the common cell adhesion peptide motif arginylglycylaspartic acid (RGD). The 3D PDMS surfaces were fabricated by photolithography and soft lithography techniques and were subsequently coated with an RGD+PDA mixture to form a surface that facilitates cell adhesion. Human monocytes (THP-1 cells) were cultured on different types of 2D or 3D micropatterns for four days, and the cell morphology, elongation, and Mreg marker expression were assessed using microscopic and flow cytometric analyses. The cells grown on the PDA+RGD-coated 3D micropatterns (20-µm width/20-µm space) exhibited the most elongated morphology and strongest expression levels of Mreg markers, such as CD163, CD206, CD209, CD274, MER-TK, TREM2, and DHRS9. The present study demonstrated that PDA+RGD-coated 3D PDMS micropatterns successfully induced Mreg-like cells from THP-1 cells within four days without the use of cytokines, suggesting a time- and cost-effective method to generate Mreg-like cells in vitro.
Keywords