Biomedicine & Pharmacotherapy (Oct 2020)

CCT128930 induces G1-phase arrest and apoptosis and synergistically enhances the anticancer efficiency of VS5584 in human osteosarcoma cells

  • Jing-yi Sun,
  • Ya-jun Hou,
  • Yi-bo Yin,
  • Feng-ze Wang,
  • Ming-feng Yang,
  • Yuan-ying Zhang,
  • Cun-dong Fan,
  • Bao-liang Sun

Journal volume & issue
Vol. 130
p. 110544

Abstract

Read online

Osteosarcoma is a highly invasive primary malignant bone tumor. PI3K/mTOR pathway plays a key role in tumor progression, and inhibition of PI3K/mTOR pathway represents a novel strategy in therapy of osteosarcoma. CCT128930 and VS5584 are both inhibitors of PI3K/mTOR, but the anticancer mechanism of CCT128930 or/and VS5584 against human osteosarcoma cells remains unclear. Herein, U2OS and MG63 human osteosarcoma cells were cultured, and the anticancer effects of CCT128930 alone and the combined effect of CCT128930 and VS5584 against human osteosarcoma cells were explored. The results showed that CCT128930 as PI3K/mTOR inhibitor effectively inhibited p-p70 and p-AKT expression and dose-dependently inhibited U2OS cells and MG63 human osteosarcoma cells growth. Further studies found that CCT128930 triggered significant G-1 phase arrest and apoptosis, as convinced by the dysfunction of p27, Cyclin B1, Cyclin D1 and Cdc2, and PARP cleavage and caspase-3 activation. Moreover, CCT128930 treatment obviously enhanced VS5584-induced growth inhibition and apoptosis in human osteosarcoma cells, followed by enhanced PARP cleavage and caspase-3 activation. Taken together, CCT128930 alone or combined treatment with CCT128930 and VS5584 both effectively inhibited human osteosarcoma cells growth by induction of G1-phase arrest and apoptosis through regulating PI3K/mTOR and MAPKs pathways.

Keywords