Actuators (Sep 2023)
Uncertainty-Estimation-Based Prescribed Performance Pressure Control for Train Electropneumatic Brake Systems
Abstract
Fast and precise pressure control for an electropneumatic brake system is essential for ensuring the safe operation of trains. However, the nonlinearity and uncertainties of the system make controller design challenging. This paper proposes a prescribed performance control method integrating an extended state observer to address this issue. A thermodynamical model of the brake cylinder is first built based on the pneumatic characteristics of the braking system, considering multiple modes, coupling effects, and input saturation. Then, an extended state observer is designed to estimate model uncertainty due to temperature variation and disturbances and to achieve online compensation of the model. A feedback control law with a specified prescribed performance function is developed based on the updated thermodynamic model to guarantee the transient and steady-state performance of the pressure control. A parameter adaptive method is also utilized to handle input saturation. The observer’s bounded convergence and stability analysis of the closed-loop control system is given using the Lyapunov theory. Compared experimental results are provided to verify the effectiveness of the proposed method.
Keywords