Nanomaterials (Feb 2024)

Fully Printed Cellulose Nanofiber–Ag Nanoparticle Composite for High-Performance Humidity Sensor

  • Mijin Won,
  • Minhun Jung,
  • Jaehwan Kim,
  • Dong-Soo Kim

DOI
https://doi.org/10.3390/nano14040343
Journal volume & issue
Vol. 14, no. 4
p. 343

Abstract

Read online

This paper reports a high-performance humidity sensor made using a novel cellulose nanofiber (CNF)–silver nanoparticle (AgNP) sensing material. The interdigital electrode pattern was printed via reverse-offset printing using Ag nano-ink, and the sensing layer on the printed interdigitated electrode (IDE) was formed by depositing the CNF-AgNP composite via inkjet printing. The structure and morphology of the CNF-AgNP layer are characterized using ultraviolet–visible spectroscopy, an X-ray diffractometer, field emission scanning electron microscopy, energy-dispersive X-ray analysis, and transmission electron microscopy. The humidity-sensing performance of the prepared sensors is evaluated by measuring the impedance changes under the relative humidity variation between 10 and 90% relative humidity. The CNF-AgNP sensor exhibited very sensitive and fast humidity-sensing responses compared to the CNF sensor. The electrode distance effect and the response and recovery times are investigated. The enhanced humidity-sensing performance is reflected in the increased conductivity of the Ag nanoparticles and the adsorption of free water molecules associated with the porous characteristics of the CNF layer. The CNF-AgNP composite enables the development of highly sensitive, fast-responding, reproducible, flexible, and inexpensive humidity sensors.

Keywords