iScience (Oct 2023)
Single-cell transcriptome profiling reveals immune and stromal cell heterogeneity in primary Sjögren’s syndrome
Abstract
Summary: Primary Sjögren’s syndrome (pSS) is a complex autoimmune disease characterized by lymphocytic infiltration and exocrine dysfunction, particularly affecting the salivary gland (SG). We employed single-cell RNA sequencing to investigate cellular heterogeneity in 11 patients with pSS and 5 non-SS controls. Notably, patients with pSS exhibited downregulated SOX9 in myoepithelial cells, potentially associated with impaired epithelial regeneration. An expanded ACKR1+ endothelial subpopulation in patients with pSS suggested a role in facilitating lymphocyte transendothelial migration. Our analysis of immune cells revealed expanded IGHD+ naive B cells in peripheral blood from patients with pSS. Pseudotime trajectory analysis outlined a bifurcated differentiation pathway for peripheral B cells, enriching three subtypes (VPREB3+ B, BANK1+ B, CD83+ B cells) within SGs in patients with pSS. Fibroblasts emerged as pivotal components in a stromal-immune interaction network, potentially driving extracellular matrix disruption, epithelial regeneration impairment, and inflammation. Our study illuminates immune and stromal cell heterogeneity in patients with pSS, offering insights into therapeutic strategies.