Soil Systems (Mar 2021)

Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review

  • Eric O. Young,
  • Donald S. Ross,
  • Deb P. Jaisi,
  • Philippe G. Vidon

DOI
https://doi.org/10.3390/soilsystems5010015
Journal volume & issue
Vol. 5, no. 1
p. 15

Abstract

Read online

Phosphorus (P) loss from cropland to ground and surface waters is a global concern. In cold climates (CCs), freeze–thaw cycles, snowmelt runoff events, and seasonally wet soils increase P loss potential while limiting P removal effectiveness of riparian buffer zones (RBZs) and other practices. While RBZs can help reduce particulate P transfer to streams, attenuation of dissolved P forms is more challenging. Moreover, P transport studies often focus on either cropland or RBZs exclusively rather than spanning the natural cropland–RBZ–stream gradient, defined here as the cropland–RBZ–stream continuum. Watershed P transport models and agronomic P site indices are commonly used to identify critical source areas; however, RBZ effects on P transport are usually not included. In addition, the coarse resolution of watershed P models may not capture finer-scale soil factors affecting P mobilization. It is clear that site microtopography and hydrology are closely linked and important drivers of P release and transport in overland flow. Combining light detection and ranging (LiDAR) based digital elevation models with P site indices and process-based models show promise for mapping and modeling P transport risk in cropland-RBZ areas; however, a better mechanistic understanding of processes controlling mobile P species across regions is needed. Broader predictive approaches integrating soil hydro-biogeochemical processes with real-time hydroclimatic data and risk assessment tools also hold promise for improving P transport risk assessment in CCs.

Keywords