Network Neuroscience (Mar 2019)

Changes in structural network topology correlate with severity of hallucinatory behavior in Parkinson’s disease

  • Julie M. Hall,
  • Claire O’Callaghan,
  • Alana J. Muller,
  • Kaylena A. Ehgoetz Martens,
  • Joseph R. Phillips,
  • Ahmed A. Moustafa,
  • Simon J. G. Lewis,
  • James M. Shine

DOI
https://doi.org/10.1162/netn_a_00078
Journal volume & issue
Vol. 3, no. 2
pp. 521 – 538

Abstract

Read online

Inefficient integration between bottom-up visual input and higher order visual processing regions is implicated in visual hallucinations in Parkinson’s disease (PD). Here, we investigated white matter contributions to this perceptual imbalance hypothesis. Twenty-nine PD patients were assessed for hallucinatory behavior. Hallucination severity was correlated to connectivity strength of the network using the network-based statistic approach. The results showed that hallucination severity was associated with reduced connectivity within a subnetwork that included the majority of the diverse club. This network showed overall greater between-module scores compared with nodes not associated with hallucination severity. Reduced between-module connectivity in the lateral occipital cortex, insula, and pars orbitalis and decreased within-module connectivity in the prefrontal, somatosensory, and primary visual cortices were associated with hallucination severity. Conversely, hallucination severity was associated with increased between- and within-module connectivity in the orbitofrontal and temporal cortex, as well as regions comprising the dorsal attentional and default mode network. These results suggest that hallucination severity is associated with marked alterations in structural network topology with changes in participation along the perceptual hierarchy. This may result in the inefficient transfer of information that gives rise to hallucinations in PD. Inefficient integration of information between external stimuli and internal perceptual predictions may lead to misperceptions or visual hallucinations in Parkinson’s disease (PD). In this study, we show that hallucinatory behavior in PD patients is associated with marked alterations in structural network topology. Severity of hallucinatory behavior was associated with decreased connectivity in a large subnetwork that included the majority of the diverse club, nodes with a high number of between-module connections. Furthermore, changes in between-module connectivity were found across brain regions involved in visual processing, top-down prediction centers, and endogenous attention, including the occipital, orbitofrontal, and posterior cingulate cortex. Together, these findings suggest that impaired integration across different sides across different perceptual processing regions may result in inefficient transfer of information.

Keywords