Applied Sciences (Jun 2021)

Hierarchical Electrode Switching Device Design for Distributed Single-Channel Electrical Resistivity Tomography System

  • Xin Xia,
  • Yu-Ying Pan,
  • Xiao-Lei Liu,
  • Yong-Gang Jia

DOI
https://doi.org/10.3390/app11125746
Journal volume & issue
Vol. 11, no. 12
p. 5746

Abstract

Read online

An electrode switching device (ESD) is one of the most important components of electrical resistivity tomography (ERT). It is a ligament and relay between a testing circuit and testing electrodes. Existing ESD uses a plane structure to realize the interconnection between ports and testing electrodes. Taking Wenner testing as an example, each electrode needs four additional switches. In this report, a new hardware saving ESD (HESD) is made with a hierarchical structure for a single-channel distributed ERT. HESD has two-layered switches to realize the conversion process. The first layer of 16 switches can realize four pairs of unrepeated connection between four ports—AMNB and four Lines—L1–L4. The second layer establishes the non-overlapping joints between four lines—L1–L4 and four testing electrodes. Each electrode only needs one switch for an 1D test, which has been wildly used in soil science, ocean probing, and contaminated surveys, and an odd number layer test. With the newly designed HESD, three fourths of the cost of hardware (switch) was saved compared with the conventional ESD. In addition, with two more switches, HESD was able to complete a 2D survey. The new two-layer HESD saves hardware costs and shows advantages in maintenance, system tests, and miniaturization, especially when many electrodes are required in an ERT system, which is very common in practice.

Keywords