Plants (Nov 2022)

Nitric Oxide and Salicylic Acid Regulate Glutathione and Ethylene Production to Enhance Heat Stress Acclimation in Wheat Involving Sulfur Assimilation

  • Faisal Rasheed,
  • Iqbal R. Mir,
  • Zebus Sehar,
  • Mehar Fatma,
  • Harsha Gautam,
  • Sheen Khan,
  • Naser A. Anjum,
  • Asim Masood,
  • Adriano Sofo,
  • Nafees A. Khan

DOI
https://doi.org/10.3390/plants11223131
Journal volume & issue
Vol. 11, no. 22
p. 3131

Abstract

Read online

Phytohormones have a role in stress adaptation. The major mechanism underlying the role of exogenously-sourced nitric oxide (NO; as sodium nitroprusside, SNP: 50.0 µM) and salicylic acid (SA; 0.5 mM) in the presence of 2.0 mM SO4−2 was assessed in heat stress (HS; 40 °C for 6 h daily for 15 days) tolerance in wheat (Triticum aestivum L. cv. HD-3226). The cultivar HD-3226 possessed high photosynthetic sulfur use efficiency (p-SUE) among the six cultivars screened. Plants grown under HS exhibited an increased content of reactive oxygen species (ROS; including superoxide radical and hydrogen peroxide) and extent of lipid peroxidation with a consequent reduction in photosynthesis and growth. However, both NO and SA were found to be protective against HS via enhanced S assimilation. Their application reduced oxidative stress and increased the activity of antioxidant enzymes. NO or SA supplementation along with S under HS recovered the losses and improved photosynthesis and growth. The use of SA inhibitor (2-aminoindane-2-phosphonic acid; AIP) and NO scavenger (cPTIO) confirmed that the mitigating effects of SA and NO involved induction in S assimilation.

Keywords