Case Studies in Thermal Engineering (Dec 2023)
Viscosity and thermal conductivity on magneto-hydrodynamic chemically reacting nanofluid over a vertical cone embedded in porous medium
Abstract
The purpose of current investigations is to explore the impacts of variable fluid properties on the vertical cone embedded in a porous medium for reduced skin friction rates and enhanced mass transfer rates. The flow governing systems of highly nonlinear partial differential equations is obtained by using the Rivilin Erickson tensor along with the theory of boundary layer approximation. Buongiorno model is analyzed using the impacts of variable properties of the fluid based on the nanofluids characteristics. The present model has been numerically tackled using the boundary value problem technique in MATLAB and the criterion for convergence or tolerance is taken as 10−6. The outcome of present study shows the variable thermal conductivity, which is improved by using the heat transfer coefficient and reduces the skin friction based on the nanofluid. The Sherwood number is also increased under the Thermophoresis diffusion and the Brownian motion. Momentum boundary layer has expanded under the adjustable thermal conductivity along with the viscidity parameter. It is stated that these investigations have not been found by using the boundary value algorithm to solve the utilizing Buongiorno nanofluid model over the vertical cone based on the permeable medium.