Frontiers in Cellular and Infection Microbiology (Nov 2022)

Molecular docking and molecular dynamics study Lianhua Qingwen granules (LHQW) treats COVID-19 by inhibiting inflammatory response and regulating cell survival

  • Jun-Feng Cao,
  • Jun-Feng Cao,
  • Yunli Gong,
  • Mei Wu,
  • Li Xiong,
  • Shengyan Chen,
  • Haonan Huang,
  • Xinge Zhou,
  • Ying-chun Peng,
  • Ying-chun Peng,
  • Xue-fang Shen,
  • Xue-fang Shen,
  • Jinyu Qu,
  • Jinyu Qu,
  • Yi-li Wang,
  • Yi-li Wang,
  • Xiao Zhang,
  • Xiao Zhang

DOI
https://doi.org/10.3389/fcimb.2022.1044770
Journal volume & issue
Vol. 12

Abstract

Read online

Purpose2019 Coronavirus disease (COVID-19) is endangering health of populations worldwide. Latest research has proved that Lianhua Qingwen granules (LHQW) can reduce tissue damage caused by inflammatory reactions and relieve patients’ clinical symptoms. However, the mechanism of LHQW treats COVID-19 is currently lacking. Therefore, we employed computer simulations to investigate the mechanism of LHQW treats COVID-19 by modulating inflammatory response.MethodsWe employed bioinformatics to screen active ingredients in LHQW and intersection gene targets. PPI, GO and KEGG was used to analyze relationship of intersection gene targets. Molecular dynamics simulations validated the binding stability of active ingredients and target proteins. Binding free energy, radius of gyration and the solvent accessible surface area were analyzed by supercomputer platform.ResultsCOVID-19 had 4628 gene targets, LHQW had 1409 gene targets, intersection gene targets were 415. Bioinformatics analysis showed that intersection targets were closely related to inflammation and immunomodulatory. Molecular docking suggested that active ingredients (including: licopyranocoumarin, Glycyrol and 3-3-Oxopropanoic acid) in LHQW played a role in treating COVID-19 by acting on CSF2, CXCL8, CCR5, NLRP3, IFNG and TNF. Molecular dynamics was used to prove the binding stability of active ingredients and protein targets.ConclusionThe mechanism of active ingredients in LHQW treats COVID-19 was investigated by computer simulations. We found that active ingredients in LHQW not only reduce cell damage and tissue destruction by inhibiting the inflammatory response through CSF2, CXCL8, CCR5 and IFNG, but also regulate cell survival and growth through NLRP3 and TNF thereby reducing apoptosis.

Keywords