PLoS ONE (Sep 2010)
Comparative analysis of plasmids in the genus Listeria.
Abstract
We sequenced four plasmids of the genus Listeria, including two novel plasmids from L. monocytogenes serotype 1/2c and 7 strains as well as one from the species L. grayi. A comparative analysis in conjunction with 10 published Listeria plasmids revealed a common evolutionary background. All analysed plasmids share a common replicon-type related to theta-replicating plasmid pAMbeta1. Nonetheless plasmids could be broadly divided into two distinct groups based on replicon diversity and the genetic content of the respective plasmid groups. Listeria plasmids are characterized by the presence of a large number of diverse mobile genetic elements and a commonly occurring translesion DNA polymerase both of which have probably contributed to the evolution of these plasmids. We detected small non-coding RNAs on some plasmids that were homologous to those present on the chromosome of L. monocytogenes EGD-e. Multiple genes involved in heavy metal resistance (cadmium, copper, arsenite) as well as multidrug efflux (MDR, SMR, MATE) were detected on all listerial plasmids. These factors promote bacterial growth and survival in the environment and may have been acquired as a result of selective pressure due to the use of disinfectants in food processing environments. MDR efflux pumps have also recently been shown to promote transport of cyclic diadenosine monophosphate (c-di-AMP) as a secreted molecule able to trigger a cytosolic host immune response following infection. The comparative analysis of 14 plasmids of genus Listeria implied the existence of a common ancestor. Ubiquitously-occurring MDR genes on plasmids and their role in listerial infection now deserve further attention.