Antioxidants (Apr 2024)

Ginger Polyphenols Reverse Molecular Signature of Amygdala Neuroimmune Signaling and Modulate Microbiome in Male Rats with Neuropathic Pain: Evidence for Microbiota–Gut–Brain Axis

  • Chwan-Li Shen,
  • Julianna Maria Santos,
  • Moamen M. Elmassry,
  • Viren Bhakta,
  • Zarek Driver,
  • Guangchen Ji,
  • Vadim Yakhnitsa,
  • Takaki Kiritoshi,
  • Jacob Lovett,
  • Abdul Naji Hamood,
  • Shengmin Sang,
  • Volker Neugebauer

DOI
https://doi.org/10.3390/antiox13050502
Journal volume & issue
Vol. 13, no. 5
p. 502

Abstract

Read online

Emerging evidence shows that the gut microbiota plays an important role in neuropathic pain (NP) via the gut–brain axis. Male rats were divided into sham, spinal nerve ligation (SNL), SNL + 200 mg GEG/kg BW (GEG200), and SNL + 600 mg GEG/kg BW (GEG600) for 5 weeks. The dosages of 200 and 600 mg GEG/kg BW for rats correspond to 45 g and 135 g raw ginger for human daily consumption, respectively. Both GEG groups mitigated SNL-induced NP behavior. GEG-supplemented animals had a decreased abundance of Rikenella, Muribaculaceae, Clostridia UCG-014, Mucispirillum schaedleri, RF39, Acetatifactor, and Clostridia UCG-009, while they had an increased abundance of Flavonifactor, Hungatella, Anaerofustis stercorihominis, and Clostridium innocuum group. Relative to sham rats, Fos and Gadd45g genes were upregulated, while Igf1, Ccl2, Hadc2, Rtn4rl1, Nfkb2, Gpr84, Pik3cg, and Abcc8 genes were downregulated in SNL rats. Compared to the SNL group, the GEG200 group and GEG600 group had increases/decreases in 16 (10/6) genes and 11 (1/10) genes, respectively. GEG downregulated Fos and Gadd45g genes and upregulated Hdac2 genes in the amygdala. In summary, GEG alleviates NP by modulating the gut microbiome and reversing a molecular neuroimmune signature.

Keywords