Molecular Therapy: Nucleic Acids (Mar 2024)
Therapeutic role of miR-19a/b protection from influenza virus infection in patients with coronary heart disease
Abstract
Patients with pre-existing medical conditions are at a heightened risk of contracting severe acute respiratory syndrome (SARS), SARS-CoV-2, and influenza viruses, which can result in more severe disease progression and increased mortality rates. Nevertheless, the molecular mechanism behind this phenomenon remained largely unidentified. Here, we found that microRNA-19a/b (miR-19a/b), which is a constituent of the miR-17-92 cluster, exhibits reduced expression levels in patients with coronary heart disease in comparison to healthy individuals. The downregulation of miR-19a/b has been observed to facilitate the replication of influenza A virus (IAV). miR-19a/b can effectively inhibit IAV replication by targeting and reducing the expression of SOCS1, as observed in cell-based and coronary heart disease mouse models. This mechanism leads to the alleviation of the inhibitory effect of SOCS1 on the interferon (IFN)/JAK/STAT signaling pathway. The results indicate that the IAV employs a unique approach to inhibit the host’s type I IFN-mediated antiviral immune responses by decreasing miR-19a/b. These findings provide additional insights into the underlying mechanisms of susceptibility to flu in patients with coronary heart disease. miR-19a/b can be considered as a preventative/therapy strategy for patients with coronary heart disease against influenza virus infection.