ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Aug 2020)

URBAN MATERIAL CLASSIFICATION USING SPECTRAL AND TEXTURAL FEATURES RETRIEVED FROM AUTOENCODERS

  • R. Ilehag,
  • J. Leitloff,
  • M. Weinmann,
  • A. Schenk

DOI
https://doi.org/10.5194/isprs-annals-V-1-2020-25-2020
Journal volume & issue
Vol. V-1-2020
pp. 25 – 32

Abstract

Read online

Classification of urban materials using remote sensing data, in particular hyperspectral data, is common practice. Spectral libraries can be utilized to train a classifier since they provide spectral features about selected urban materials. However, urban materials can have similar spectral characteristic features due to high inter-class correlation which can lead to misclassification. Spectral libraries rarely provide imagery of their samples, which disables the possibility of classifying urban materials with additional textural information. Thus, this paper conducts material classification comparing the benefits of using close-range acquired spectral and textural features. The spectral features consist of either the original spectra, a PCA-based encoding or the compressed spectral representation of the original spectra retrieved using a deep autoencoder. The textural features are generated using a deep denoising convolutional autoencoder. The spectral and textural features are gathered from the recently published spectral library KLUM. Three classifiers are used, the two well-established Random Forest and Support Vector Machine classifiers in addition to a Histogram-based Gradient Boosting Classification Tree. The achieved overall accuracy was within the range of 70–80% with a standard deviation between 2–10% across all classification approaches. This indicates that the amount of samples still is insufficient for some of the material classes for this classification task. Nonetheless, the classification results indicate that the spectral features are more important for assigning material labels than the textural features.