EURASIP Journal on Wireless Communications and Networking (Mar 2021)

Remote interference management in 5G new radio: methods and performance

  • Elena Peralta,
  • Toni Levanen,
  • Mikko Mäenpää,
  • Youngsoo Yuk,
  • Klaus Pedersen,
  • Sari Nielsen,
  • Mikko Valkama

DOI
https://doi.org/10.1186/s13638-021-01926-2
Journal volume & issue
Vol. 2021, no. 1
pp. 1 – 22

Abstract

Read online

Abstract In time division duplexing based mobile networks, under certain atmospheric ducting conditions, the uplink reception may be interfered by the downlink transmissions of remote base-stations (gNBs) located hundreds of kilometers away. This paper addresses such remote interference problem in a 5G new radio (NR) macro deployment context. Specifically, two potential reference signal (RS) designs for remote interference management (RIM) are described. The first signal structure, denoted as the one OFDM symbol (1OS) based RIM-RS, is building on the channel state information reference signals of 5G NR. The second candidate is referred to as the two OFDM symbol based RIM-RS design, which builds on the design principles of LTE RIM-RS. The achievable detection performance is evaluated by introducing enhanced receiver algorithms together with three feasible propagation delay based gNB grouping and corresponding RIM-RS transmissions schemes. The performance results in terms of the receiver processing gain highlight that the improved detection algorithm assures sufficient performance to detect the remote interference for both RIM-RSs with all evaluated frequency domain comb-like patterns. The benefit of grouping corresponding RIM-RS transmissions from gNBs located on the same area is greater when using same frequency domain resources per transmitted sequence in practical interference scenarios. Furthermore, applying a common base sequence for all gNBs within a group allows to identify the group based on detected sequence and enables adaptive RIM mitigation schemes. On the other hand, it is shown that the 1OS RIM-RS provides smaller overhead and can be frequency multiplexed with the physical downlink shared channel, which opens up the possibility of using gNB group wise 1OS RIM-RS also for UE interference measurements.

Keywords