Nature Communications (Jun 2021)
Physical constraints and functional plasticity of cellulases
- Jeppe Kari,
- Gustavo A. Molina,
- Kay S. Schaller,
- Corinna Schiano-di-Cola,
- Stefan J. Christensen,
- Silke F. Badino,
- Trine H. Sørensen,
- Nanna S. Røjel,
- Malene B. Keller,
- Nanna Rolsted Sørensen,
- Bartlomiej Kolaczkowski,
- Johan P. Olsen,
- Kristian B. R. M. Krogh,
- Kenneth Jensen,
- Ana M. Cavaleiro,
- Günther H. J. Peters,
- Nikolaj Spodsberg,
- Kim Borch,
- Peter Westh
Affiliations
- Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark
- Gustavo A. Molina
- Department of Biotechnology and Biomedicine, Technical University of Denmark
- Kay S. Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark
- Corinna Schiano-di-Cola
- Department of Biotechnology and Biomedicine, Technical University of Denmark
- Stefan J. Christensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark
- Silke F. Badino
- Department of Biotechnology and Biomedicine, Technical University of Denmark
- Trine H. Sørensen
- Novozymes A/S
- Nanna S. Røjel
- Department of Science and Environment, Roskilde University, Universitetsvej 1
- Malene B. Keller
- Department of Geosciences and Natural Resource Management, University of Copenhagen
- Nanna Rolsted Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1
- Bartlomiej Kolaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1
- Johan P. Olsen
- Novozymes A/S
- Kristian B. R. M. Krogh
- Novozymes A/S
- Kenneth Jensen
- Novozymes A/S
- Ana M. Cavaleiro
- Novozymes A/S
- Günther H. J. Peters
- Department of Chemistry, Technical University of Denmark
- Nikolaj Spodsberg
- Novozymes A/S
- Kim Borch
- Novozymes A/S
- Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark
- DOI
- https://doi.org/10.1038/s41467-021-24075-y
- Journal volume & issue
-
Vol. 12,
no. 1
pp. 1 – 10
Abstract
Enzyme reactions at interfaces are common in both Nature and industrial applications but no general kinetic framework exists for interfacial enzymes. Here, the authors kinetically characterize 83 cellulases and identify a scaling relationship between ligand binding strength and maximal turnover, a so-called linear free energy relationship, which may help rationalize cellulolytic mechanisms and guide the selection of technical enzymes.