Molecules (Apr 2018)

Anti-Proliferative Activity of HPOB against Multiple Myeloma Cells via p21 Transcriptional Activation

  • Linlin Liu,
  • Xiaoyang Sun,
  • Yu Xie,
  • Yinping Zhuang,
  • Ruosi Yao,
  • Kai Xu

DOI
https://doi.org/10.3390/molecules23051044
Journal volume & issue
Vol. 23, no. 5
p. 1044

Abstract

Read online

Histone acetylation or deacetylation is closely associated with the progression of multiple myeloma (MM). Currently, many histone deacetylase (HDAC) inhibitors have been approved for being used in clinical trials, but theirtherapeutic effectsarestill not ideal. As a novel HDAC inhibitor, hydroxamicacid-based small-moleculeN-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB)’s possible roles in MM have not been studied. In this present study, the effect of HPOB as a potential anti-tumor agent in preventingproliferation and inducing apoptosis of MM cells had been investigated in detail. Our results showed that HPOB decreased the survival of MM cells in dose- and time-dependent manner. In addition, HPOB caused the accumulation of MM cells in G1 phase compared with the dimethylsulfoxide (DMSO) control group. Interestingly, we found that HPOB could overcome bortezomib (BTZ) resistance inMM cells and combining HPOB with BTZ could further sensitize MM cells. Certainly, our data illuminated that HPOB-mediated cell death occurs via transcriptional activation of p21, which was associated with an elevated level of global histone 3 acetylation (H3Ac) modification. Therefore, HPOB could be a potential candidate for MM treatment and the combination of HPOB and bortezomibcould bea possible therapeutic strategy for relapsed and refractory MM.

Keywords