AIMS Mathematics (Jan 2024)

Twisted Rota-Baxter operators on Hom-Lie algebras

  • Senrong Xu ,
  • Wei Wang,
  • Jia Zhao

DOI
https://doi.org/10.3934/math.2024129
Journal volume & issue
Vol. 9, no. 2
pp. 2619 – 2640

Abstract

Read online

Uchino initiated the investigation of twisted Rota-Baxter operators on associative algebras. Relevant studies have been extensive in recent times. In this paper, we introduce the notion of a twisted Rota-Baxter operator on a Hom-Lie algebra. By utilizing higher derived brackets, we establish an explicit $ L_{\infty} $-algebra whose Maurer-Cartan elements are precisely twisted Rota-Baxter operators on Hom-Lie algebra s. Additionally, we employ Getzler's technique of twisting $ L_\infty $-algebras to establish the cohomology of twisted Rota-Baxter operators. We demonstrate that this cohomology can be regarded as the Chevalley-Eilenberg cohomology of a specific Hom-Lie algebra with coefficients in an appropriate representation. Finally, we study the linear and formal deformations of twisted Rota-Baxter operators by using the cohomology defined above. We also show that the rigidity of a twisted Rota-Baxter operator can be derived from Nijenhuis elements associated with a Hom-Lie algebra.

Keywords