Annals of Clinical and Translational Neurology (Dec 2019)

High‐frequency oscillations mirror severity of human temporal lobe seizures

  • Jan Schönberger,
  • Nadja Birk,
  • Daniel Lachner‐Piza,
  • Matthias Dümpelmann,
  • Andreas Schulze‐Bonhage,
  • Julia Jacobs

DOI
https://doi.org/10.1002/acn3.50941
Journal volume & issue
Vol. 6, no. 12
pp. 2479 – 2488

Abstract

Read online

Abstract Objective Many patients with epilepsy have both focal and bilateral tonic‐clonic seizures (BTCSs), but it is largely unclear why ictal activity spreads only sometimes. Previous work indicates that interictal high‐frequency oscillations (HFOs), traditionally subdivided into ripples (80–250 Hz) and fast ripples (250–500 Hz), are a promising biomarker of epileptogenicity. We aimed to investigate whether HFOs correlate with the emergence of seizure activity and whether they differ between focal seizures (FSs) with impaired awareness and BTCSs. Methods We retrospectively analyzed 15 FSs and 13 BTCSs from seven patients with mesial temporal lobe epilepsy, each of them with at least one BTCS and at least one FS. Representative intervals of intracranial electroencephalography from the seizure onset zone (SOZ) and remote non‐SOZ areas were selected to compare pre‐ictal, complex focal, tonic‐clonic, and postictal periods. Ripples and fast ripples were visually identified and their density, that is, percentage of time occupied by the respective events, computed. Results Ripple and fast ripple densities increased inside the SOZ after seizure onset (P < 0.01) and in remote areas after progression to BTCSs (P < 0.01). Postictal SOZ ripple density dropped below pre‐ictal levels (P < 0.001). Prior to onset of bilateral tonic‐clonic movements, ripple density inside the SOZ is higher in BTCSs than in FSs (P < 0.05). Interpretation Ripples and fast ripples correlate with onset and spread of ictal activity. Abundant ripples inside the SOZ may reflect the activation of specific neuronal networks related to imminent spread of seizure activity.