Epidemics (Mar 2024)
Inferring transmission routes for foot-and-mouth disease virus within a cattle herd using approximate Bayesian computation
Abstract
To control an outbreak of an infectious disease it is essential to understand the different routes of transmission and how they contribute to the overall spread of the pathogen. With this information, policy makers can choose the most efficient methods of detection and control during an outbreak. Here we assess the contributions of direct contact and environmental contamination to the transmission of foot-and-mouth disease virus (FMDV) in a cattle herd using an individual-based model that includes both routes. Model parameters are inferred using approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC) applied to data from transmission experiments and the 2007 epidemic in Great Britain. This demonstrates that the parameters derived from transmission experiments are applicable to outbreaks in the field, at least for closely related strains. Under the assumptions made in the model we show that environmental transmission likely contributes a majority of infections within a herd during an outbreak, although there is a lot of variation between simulated outbreaks. The accumulation of environmental contamination not only causes infections within a farm, but also has the potential to spread between farms via fomites. We also demonstrate the importance and effectiveness of rapid detection of infected farms in reducing transmission between farms, whether via direct contact or the environment.