Baltic Journal of Economics (Jul 2017)
Forecasting the Estonian rate of inflation using factor models
Abstract
The paper presents forecasts of headline and core inflation in Estonia with factor models in a recursive pseudo out-of-sample framework. The factors are constructed with a principal component analysis and are then incorporated into vector autoregressive (VAR) forecasting models. The analyses show that certain factor-augmented VAR models improve upon a simple univariate autoregressive model but the forecasting gains are small and not systematic. Models with a small number of factors extracted from a large dataset are best suited for forecasting headline inflation. The results also show that models with a larger number of factors extracted from a small dataset outperform the benchmark model in the forecast of Estonian headline and, especially, core inflation.
Keywords