Energies (Jun 2019)
Comparison of Measured and Calculated Data for NPP Krško CILR Test
Abstract
Containment is the last barrier for release of radioactive materials in the case of an accident in the nuclear power plant (NPP). Its overall integrity is tested during a containment integrated leak rate test (CILRT) at the design pressure, at regular intervals. Due to applied risk based licensing, the test intervals can be increased up to once in 10 years and beyond. Taking that into account it is important to prepare the test properly and to use obtained results to assess the real status of the containment. The test can be used to verify existing containment calculation models. There is a potential benefit of verified computer models usage for the explanation of some test results, too. NPP Krško has performed CILRT during the plant outage in 2016. The paper presents a comparison between measured data and results calculated using a multivolume GOTHIC (Generation Of Thermal Hydraulic Information For Containment) model. The test scenario was reproduced using limited available data up to the end of the pressurization phase. The depressurization phase is calculated by the code and measured leakage rate is implemented in the model. Taking into account the necessary adjustments in the model, overall prediction of the measured results (in terms of pressure, temperature and humidity) is very good. In the last phase of the test some non-physical behavior is noticed (without influence on overall test results), probably caused by the combination of air redistribution within the containment and influence of heat transfer to plant systems that were in the operation during the test. GOTHIC model was used to check sensitivity of the predicted pressure (leak rate) to different heat inputs and to investigate the influence that operation of only one reactor containment fan cooler (RCFC) train during pressurization can have on the mixing of air within the containment. In addition, the influence of currently used weighting factors (weighting of measured temperature, relative humidity and pressure data) on the used test methodology is investigated. The possible non-conservative direction of the influence (currently used weighting factors are giving lower leakage rate) was demonstrated and a new set of weighting factors is proposed too.
Keywords