Heliyon (Apr 2024)
Recent advances in vacuum impregnation of fruits and vegetables processing: A concise review
Abstract
Vacuum impregnation (VI) is a novel, non-thermal treatment that aims to modify the composition of food material by partially removing water and air and impregnating it with physiologically active compounds without affecting the structural integrity of food matrix. Application of VI accelerates the mass transfer processes, which leads to few changes in food composition and improves dehydration. Large volumes in intracellular spaces of fruit and vegetable tissues make it suitable to introduce different agents like nutrients, cryoprotectants, browning inhibitors, enzymes, and chemicals; enhancing texture profile and inhibiting tissue softening, or compounds lowering water activity and pH. water activity Thus, the VI may help to achieve new product quality associated with physicochemical features and sensory attributes. This review highlights the evolution and mechanism of VI technique, major factors affecting VI of fruits and vegetables and their responses to processing, and industrial relevance. Vacuum impregnation consists ability to revolutionize various aspects of food processing and preservation. VI serves as a versatile tool that enhances the quality, shelf life, and nutritional content of processed fruits and vegetables. It offers unique advantages of altering product composition by introducing desired compounds while preserving structural integrity. VI improves mass transfer processes, reduces water content, enhances the absorption of nutrients, antioxidants, and preservatives. This technology finds application in producing fortified foods, extending shelf life, and creating innovative products with improved sensory attributes. VI's ability to efficiently impregnate substances into porous materials, combined with its energy-saving potential and compatibility with other processing methods, makes it a valuable tool in the food industry. As consumers demand healthier and long-lasting products, VI emerges as a promising solution for meeting market demands.