Molecular Plant-Microbe Interactions (May 2024)

The Micacocidin Production-Related RSc1806 Deletion Alters the Quorum Sensing-Dependent Gene Regulation of Ralstonia pseudosolanacearum Strain OE1-1

  • Yuki Terazawa,
  • Masayuki Tsuzuki,
  • Hiroto Nakajima,
  • Kanako Inoue,
  • Sora Tateda,
  • Akinori Kiba,
  • Kouhei Ohnishi,
  • Kenji Kai,
  • Yasufumi Hikichi

DOI
https://doi.org/10.1094/MPMI-12-23-0203-R
Journal volume & issue
Vol. 37, no. 5
pp. 467 – 476

Abstract

Read online

The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Graphic: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Keywords