Applied Sciences (Feb 2019)
Optimizing the Preparation of Semi-Crystalline Paraffin/Poly(Urea-Formaldehyde) Microcapsules for Thermal Energy Storage
Abstract
Paraffin, the most common phase change material, has been widely utilized as the core component in thermal energy storage in the form of microcapsules. In this study, semi-crystalline paraffin is capsulated into a poly(urea-formaldehyde) (PUF) shell by a two-step polymerization process. To obtain the microcapsule with good morphology and high latent heat, sodium chloride and crosslinker (a mixture of ammonium chloride and resorcinol with a weight ratio of 1:1) are incorporated and their addition amounts were optimized through differential scanning calorimetry (DSC) and SEM. The optimized microcapsules were obtained by adding 4 wt% sodium chloride, and 0.25 wt% crosslinker exhibits a diameter of several microns and a melting enthalpy of 110 J/g. This detailed study shows that sodium chloride strongly affects the morphology of paraffin emulsion by enlarging droplets, widening the size distribution, and enhancing the stability, which should be attributed to the enhancement of electric double layer strength. In addition, sodium chloride can weaken the Zeta potential of prepolymer and provides more opportunity for prepolymer to deposit on the surface of emulsion droplets. The two components in crosslinker play different roles in the polymerization process. Ammonium chloride reacts with prepolymers and reduces the pH of system, which can accelerate the curing process, while resorcinol probably participates in polymerization as a comonomer.
Keywords