Machines (Jun 2022)
Material Extrusion Advanced Manufacturing of Helical Artificial Muscles from Shape Memory Polymer
Abstract
Rehabilitation and mobility assistance using robotic orthosis or exoskeletons have shown potential in aiding those with musculoskeletal disorders. Artificial muscles are the main component used to drive robotics and bio-assistive devices. However, current fabrication methods to produce artificial muscles are technically challenging and laborious for medical staff at clinics and hospitals. This study aims to investigate a printhead system for material extrusion of helical polymer artificial muscles. In the proposed system, an internal fluted mandrel within the printhead and a temperature control module were used simultaneously to solidify and stereotype polymer filaments prior to extrusion from the printhead with a helical shape. Numerical simulation was applied to determine the optimal printhead design, as well as analyze the coupling effects and sensitivity of the printhead geometries on artificial muscle fabrication. Based on the simulation analysis, the printhead system was designed, fabricated, and operated to extrude helical filaments using polylactic acid. The diameter, thickness, and pitch of the extruded filaments were compared to the corresponding geometries of the mandrel to validate the fabrication accuracy. Finally, a printed filament was programmed and actuated to test its functionality as a helical artificial muscle. The proposed printhead system not only allows for the stationary extrusion of helical artificial muscles but is also compatible with commercial 3D printers to freeform print helical artificial muscle groups in the future.
Keywords