Journal of Lipid Research (Sep 2009)

Effects of rosuvastatin on electronegative LDL as characterized by capillary isotachophoresis: the ROSARY Study

  • Bo Zhang,
  • Akira Matsunaga,
  • David L. Rainwater,
  • Shin-ichiro Miura,
  • Keita Noda,
  • Hiroaki Nishikawa,
  • Yoshinari Uehara,
  • Kazuyuki Shirai,
  • Masahiro Ogawa,
  • Keijiro Saku

Journal volume & issue
Vol. 50, no. 9
pp. 1832 – 1841

Abstract

Read online

Electronegative LDL, a charge-modified LDL (cm-LDL) subfraction that is more negatively charged than normal LDL, has been shown to be inflammatory. We previously showed that pravastatin and simvastatin reduced the electronegative LDL subfraction, fast-migrating LDL (fLDL), as analyzed by capillary isotachophoresis (cITP). The present study examined the effects of rosuvastatin on the more electronegative LDL subfraction, very-fast-migrating LDL (vfLDL), and small, dense charge-modified LDL (sd-cm-LDL) subfractions. Patients with hypercholesterolemia or those who were being treated with statins (n = 81) were treated with or switched to 2.5 mg/d rosuvastatin for 3 months. Rosuvastatin treatment effectively reduced cITP cm-LDL subfractions of LDL (vfLDL and fLDL) or sdLDL (sd-vfLDL and sd-fLDL), which were closely related to each other but were different from the normal subfraction of LDL [slow-migrating LDL (sLDL)] or sdLDL (sd-sLDL) in their relation to the levels of remnant-like particle cholesterol (RLP-C), apolipoprotein (apo) C-II, and apoE. The percent changes in cm-LDL or sd-cm-LDL caused by rosuvastatin were correlated with those in the particle concentrations of LDL or sdLDL measured as LDL-apoB or sdLDL-apoB and the levels of HDL-C, RLP-C, apoC-II, and apoE. In conclusion, rosuvastatin effectively reduced both the vfLDL subfraction and sd-cm-LDL subfractions as analyzed by cITP.

Keywords