Molecules (Apr 2024)

Synthesis and Characterization of Phenazine-Based Redox Center for High-Performance Polymer Poly(aryl ether sulfone)-5,10-Diphenyl-dihydrophenazine

  • Qilin Wang,
  • Xuehan Wang,
  • Yuehui Zhai,
  • Zhibo Zheng,
  • Huilin Shen,
  • Yuntao Han,
  • Zheng Chen,
  • Zhenhua Jiang

DOI
https://doi.org/10.3390/molecules29071618
Journal volume & issue
Vol. 29, no. 7
p. 1618

Abstract

Read online

Phenazine-based redox-active centers are capable of averting chemical bond rearrangements by coupling during the reaction process, leading to enhanced stabilization of the material. When introduced into a high-performance polymer with excellent physicochemical properties, they can be endowed with electrochemical properties and related prospective applications while maintaining the capabilities of the materials. In this study, a facile C-N coupling method was chosen for the synthesis of serial poly(aryl ether sulfone) materials containing phenazine-based redox-active centers and to explore their electrochemical properties. As expected, the cyclic voltammetry curves of PAS-DPPZ-60, which basically overlap after thousands of cycles, indicate the stability of the electrochemical properties. As an electrochromic material, the transmittance change in PAS-DPPZ-60 exhibits only a slight attenuation after as long as 600 cycles. Meanwhile, as an organic battery cathode material, PAS-DPPZ has a theoretical specific capacity of 126 mAh g−1, and the capacity retention rate is 82.6% after 100 cycles at a 0.1 C current density. The perfect combination of advantageous features between phenazine and poly(aryl ether sulfone) is considered to be the reason for the favorable electrochemical performance of the material series.

Keywords