Heliyon (Nov 2023)

Applying modified-data mining techniques to assess public transportation vulnerable urban and suburban city areas

  • Donghee Oh,
  • Sangjae Lee,
  • Juneyoung Park,
  • Jaehong Park,
  • Chang-Gyun Roh

Journal volume & issue
Vol. 9, no. 11
p. e21213

Abstract

Read online

To guarantee the right to move for residents in areas where public transportation is insufficient, research is needed to identify vulnerable areas and prepare measures. This paper defines the vulnerable regions of public transportation within various city types in Korea. In order to identify appropriate areas to apply the Demand Responsive Transit (DRT), the regions with vulnerability were compared with a specific city (Yangsan-si) which already the DRT system was successfully adopted. To collect monthly bus data, web-data crawling method was performed and processed with coordinating program by matching GPS coordinate. The public transportation demand was predicted for each grid cell size (100 m, 250 m, and 500 m) by different methodologies. Various data mining models based on regression were analyzed to predict bus demand of vulnerable areas. Among models, a modified model was suggested to combine Automated machine learning models for high prediction performance. The modified model outperformed other methods as 0.685 and prediction performance was appropriate at 100 m rectangle grid. Regional characters of DRT bus allocation areas were extracted by K-means clustering method and differentiate urban and suburban types. The findings of this study provide valuable insights into conditions that DRT bus stop can be installed. The urban bus stop areas located in metropolitan cities and the suburban bus stop allocation areas located in countryside. The study results can be used as policy data for the successful introduction to prevent social exclusion and improve resident welfare in the future.

Keywords