Open Physics (Dec 2020)
Optimization of SCR inflow uniformity based on CFD simulation
Abstract
The inflow uniformity before selective catalytic reduction (SCR) catalyst carrier is a major issue for DeNOx capability of diesel engine after-treatment. Through the construction of the numerical model and CFD simulation of six perforated plate variations with different structural and positional characteristics, the influence of perforated plates on the uniformity of the airflow velocity at the inlet of the SCR catalyst carrier was analyzed. Comparison of different perforated plate variations shows that the encircling flow is a major hindrance to achieve higher inflow uniformity. Enclosed flow passage can remove the encircling flow and increase inflow uniformity at the cost of increased pressure drop. Rational layout of the perforated plate can achieve uniformity increase, while decrease pressure drop. High-velocity exhaust coupled with larger holes can improve both uniformity and pressure drop. The uniformity index increased from 97.6% of the original design to 98.7% of the optimized design, while pressure drop increased from 11.20 to 12.09 kPa. Weighing the relationship between inflow uniformity and pressure drop is an issue worthy of attention.
Keywords