Separations (Jul 2023)
Enantioselective Separation of Synthetic Cathinones by Capillary Electrophoresis with Ionic Liquid and Cyclodextrin Buffer Co-Additives
Abstract
The enantioselective separation of synthetic cathinones via capillary electrophoresis with ultraviolet detection (CE-UV) was successfully achieved using an acidic formate buffer with the ionic liquid tetrabutylammonium chloride (TBAC) and beta-cyclodextrin (β-CD) as co-additives. Synthetic cathinones (also known as “bath salts”) belong to a class of unregulated drugs labeled new psychoactive substances (NPS). These drugs are readily available and can cause paranoia, confusion, violence, and suicidal thoughts. The stereochemistry of synthetic cathinones, as with other drugs, can influence their potency, toxicity, metabolism, and interaction with other molecules. Thus, it is important to be able to effectively separate different types of synthetic cathinone as well as to resolve enantiomers of each. A study of buffer additives, pH, and counter ions was conducted to identify a system yielding complete enantioselective separation of synthetic cathinones by capillary electrophoresis. Buffer additives TBAC and β-CD, when used separately, did not afford the desired separation; however, when employed as co-additives, enantiomers of each of six different bath salt standards (pentylone, 4-MEC, methylone, MDPBP, MDPV, and naphyrone) were resolved. Achieving this separation of a complex mixture of closely related illicit drugs by CE using an ionic liquid and cyclodextrin together, as buffer co-additives, may provide a new starting point from which to approach the enantiomeric analysis of other drug samples as syntheses of NPS continue to rapidly evolve to evade regulation and law enforcement.
Keywords