Remote Sensing (Jun 2024)
Developing a Semi-Automated Near-Coastal, Water Quality-Retrieval Process from Global Multi-Spectral Data: South-Eastern Australia
Abstract
The estimation of water quality properties through satellite remote sensing relies on (1) the optical characteristics of the water body, (2) the resolutions (spatial, spectral, radiometric and temporal) of the sensor and (3) algorithm(s) applied. More than 80% of global water bodies fall under Case I (open ocean) waters, dominated by scattering and absorption associated with phytoplankton in the water column. Globally, previous studies show significant correlations between satellite-based retrieval methods and field measurements of absorbing and scattering constituents, while limited research from Australian coastal water bodies appears. This study presents a methodology to extract chlorophyll a properties from surface waters from near-coastal environments, within 2 km of coastline, in Tasmania, south-eastern Australia. We use general purpose, global, long-time series, multi-spectral satellite data, as opposed to ocean colour-specific sensor data. This approach may offer globally applicable tools for combining global satellite image archives with in situ field sensors for water quality monitoring. To enable applications from local to global scales, a cloud-based geospatial analysis workflow was developed and tested on several sites. This work represents the initial stage in developing a semi-automated near-coastal water-quality workflow using easily accessed, fully corrected global multi-spectral datasets alongside large-scale computation and delivery capabilities. Our results indicated a strong correlation between the in situ chlorophyll concentration data and blue-green band ratios from the multi-spectral sensor. In line with published research, environment-specific empirical models exhibited the highest correlations between in situ and satellite measurements, underscoring the importance of tailoring models to specific coastal waters. Our findings may provide the basis for developing this workflow for other sites in Australia. We acknowledge the use of general purpose multi-spectral data such as the Sentinel-2 and Landsat Series, their corrections and algorithms may not be as accurate and precise as ocean colour satellites. The data we are using are more readily accessible and also have true global coverage with global historic archives and regular, global collection will continue at least 10 years in the future. Regardless of sensor specifications, the retrieval method relies on localised algorithm calibration and validation using in situ measurements, which demonstrates close-to-realistic outputs. We hope this approach enables future applications to also consider these globally accessible and regularly updated datasets that are suited to coastal environments.
Keywords