Journal of Clinical and Translational Science (Apr 2024)

439 Extracellular-in-frame deletions and kinase domain duplications are novel, gain-of-function mutations in fibroblast growth factor receptor genes in cancer

  • Leah Stein,
  • Julie W. Reeser,
  • Michele R. Wing,
  • Chunjie Li,
  • Karthikeyan Murugesan,
  • Dean Pavlick,
  • Emily L. Hoskins,
  • Raven Vella,
  • Georgia Rigsbee,
  • Sameek Roychowdhury

DOI
https://doi.org/10.1017/cts.2024.377
Journal volume & issue
Vol. 8
pp. 130 – 130

Abstract

Read online

OBJECTIVES/GOALS: There are gain-of-function genomic alterations in FGFR genes that guide personalized treatment in some patients with cholangiocarcinoma (10%) and bladder cancer (30%) who can benefit from targeted therapies. We sought to evaluate other genomic alterations in cancer involving FGFRs and assess whether they are gain-of-function. METHODS/STUDY POPULATION: We collaborated with Foundation Medicine Inc (FMI), for the assessment of 300,000 sequenced tumors and a retrospective analysis of recent publications, to identify novel candidate FGFR alterations. We propose to transiently transfect HEK293T cells with an empty vector (EV), FGFR1-4 wild-type (WT), and these variants and use a luminescent-proximity based high-throughput assay, AlphaLISA, and Western blot to assess FGFR and phosphorylated downstream signaling proteins, FRS2, AKT and ERK, and their sensitivity to FGFR inhibitors: pemigatinib, erdafitinib, futibatinib, RLY-4008, and TYRA-200. RESULTS/ANTICIPATED RESULTS: Through our collaboration we identified >100 novel candidate FGFR1-4 variants of unknown significance (VUS) including extracellular-in-frame deletions (EIDs), kinase domain duplications (KDDs), insertions/deletions (INDELs), short number variants (SNVs), and truncations. Immunoblot analysis confirmed the presence of desired EV, FGFR WT, and VUS’ in HEK293T cells. We anticipate the FGFR EIDs and KDDs to display an increased presence of in the respective pFGFR, pFRS2, pERK, and pAKT as compared to the EV and FGFR WT by both immunoblot and AlpahLISA analysis. Additionally, we anticipate the VUS’ to be sensitive to FGFR inhibitors: pemigatinib, erdafitinib, futibatinib, RLY-4008, and TYRA-200 using the AlphaLISA assay. DISCUSSION/SIGNIFICANCE: These findings suggest that the novel FGFR VUS’ are capable of constitutive activation of FGFR kinase activity, and they preliminary demonstrate that these newly identified FGFR alterations are therapeutically targetable. Thus, providing rationale for further clinical evaluation to identify new cohorts of FGFR inhibitor responders.