PLoS ONE (Jan 2021)

A hard day's night: Patterns in the diurnal and nocturnal foraging behavior of Apis dorsata across lunar cycles and seasons.

  • Allison M Young,
  • Sangamesh Kodabalagi,
  • Axel Brockmann,
  • Fred C Dyer

DOI
https://doi.org/10.1371/journal.pone.0258604
Journal volume & issue
Vol. 16, no. 10
p. e0258604

Abstract

Read online

The giant honey bee Apis dorsata is unusual in being able to forage during both the day and the night. To date, the extent of this unique nocturnal foraging behavior and the environmental factors correlating with it have not been deeply investigated. We conducted the first systematic investigation into the nocturnal behavior of A. dorsata in Southern India by tracking the daily and nightly foraging activity of A. dorsata colonies in an urban environment for 8 months, over multiple seasons and lunar cycles. We found strong evidence that A. dorsata can behave in a manner that is "cathemeral" (active over the entire diel cycle) when environmental illumination is sufficient for nocturnal flight. However, workers were not always active even when the environment should have been bright enough for them to forage, suggesting that their nocturnal foraging behavior was also affected by seasonal changes in resource availability. The foraging activity observed during the day versus twilight versus night differed between seasons; notably, nocturnal activity rates were higher than diurnal activity rates during the winter. We found that at our study site A. dorsata routinely exhibits both diurnal and crepuscular activity, foraging just as intensely during the short twilight hours as during the day. The high foraging activity observed during the twilight and nighttime hours shows that A. dorsata colonies can extend their foraging beyond the daylight hours and reveals that foraging during these dimly lit hours is an integral part of their foraging ecology. This evidence of the importance of nocturnal and crepuscular foraging by A. dorsata paves the way for future studies examining the role of this species in nocturnal pollination networks, the contribution of nocturnal foraging to colony-level nutrition and energy budget, and the evolution of this unusual behavior. Future work comparing nocturnal activity in light polluted urban environments versus unpolluted natural environments is particularly encouraged to determine the generalizability of these findings.