Symmetry (Jan 2022)

An Intelligent Cloud Service Composition Optimization Using Spider Monkey and Multistage Forward Search Algorithms

  • Hassan Tarawneh,
  • Issam Alhadid,
  • Sufian Khwaldeh,
  • Suha Afaneh

DOI
https://doi.org/10.3390/sym14010082
Journal volume & issue
Vol. 14, no. 1
p. 82

Abstract

Read online

Web service composition allows developers to create and deploy applications that take advantage of the capabilities of service-oriented computing. Such applications provide the developers with reusability opportunities as well as seamless access to a wide range of services that provide simple and complex tasks to meet the clients’ requests in accordance with the service-level agreement (SLA) requirements. Web service composition issues have been addressed as a significant area of research to select the right web services that provide the expected quality of service (QoS) and attain the clients’ SLA. The proposed model enhances the processes of web service selection and composition by minimizing the number of integrated Web Services, using the Multistage Forward Search (MSF). In addition, the proposed model uses the Spider Monkey Optimization (SMO) algorithm, which improves the services provided with regards to fundamentals of service composition methods symmetry and variations. It achieves that by minimizing the response time of the service compositions by employing the Load Balancer to distribute the workload. It finds the right balance between the Virtual Machines (VM) resources, processing capacity, and the services composition capabilities. Furthermore, it enhances the resource utilization of Web Services and optimizes the resources’ reusability effectively and efficiently. The experimental results will be compared with the composition results of the Smart Multistage Forward Search (SMFS) technique to prove the superiority, robustness, and effectiveness of the proposed model. The experimental results show that the proposed SMO model decreases the service composition construction time by 40.4%, compared to the composition time required by the SMFS technique. The experimental results also show that SMO increases the number of integrated ted web services in the service composition by 11.7%, in comparison with the results of the SMFS technique. In addition, the dynamic behavior of the SMO improves the proposed model’s throughput where the average number of the requests that the service compositions processed successfully increased by 1.25% compared to the throughput of the SMFS technique. Furthermore, the proposed model decreases the service compositions’ response time by 0.25 s, 0.69 s, and 5.35 s for the Excellent, Good, and Poor classes respectively compared to the results of the SMFS Service composition response times related to the same classes.

Keywords