NeuroImage (Feb 2022)

A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD

  • Kanhao Zhao,
  • Boris Duka,
  • Hua Xie,
  • Desmond J. Oathes,
  • Vince Calhoun,
  • Yu Zhang

Journal volume & issue
Vol. 246
p. 118774

Abstract

Read online

The pathological mechanism of attention deficit hyperactivity disorder (ADHD) is incompletely specified, which leads to difficulty in precise diagnosis. Functional magnetic resonance imaging (fMRI) has emerged as a common neuroimaging technique for studying the brain functional connectome. Most existing methods that have either ignored or simply utilized graph structure, do not fully leverage the potentially important topological information which may be useful in characterizing brain disorders. There is a crucial need for designing novel and efficient approaches which can capture such information. To this end, we propose a new dynamic graph convolutional network (dGCN), which is trained with sparse brain regional connections from dynamically calculated graph features. We also develop a novel convolutional readout layer to improve graph representation. Our extensive experimental analysis demonstrates significantly improved performance of dGCN for ADHD diagnosis compared with existing machine learning and deep learning methods. Visualizations of the salient regions of interest (ROIs) and connectivity based on informative features learned by our model show that the identified functional abnormalities mainly involve brain regions in temporal pole, gyrus rectus, and cerebellar gyri from temporal lobe, frontal lobe, and cerebellum, respectively. A positive correlation was further observed between the identified connectomic abnormalities and ADHD symptom severity. The proposed dGCN model shows great promise in providing a functional network-based precision diagnosis of ADHD and is also broadly applicable to brain connectome-based study of mental disorders.

Keywords