Atmosphere (Mar 2019)
Analysis of Two Dimensionality Reduction Techniques for Fast Simulation of the Spectral Radiances in the Hartley-Huggins Band
Abstract
The new generation of atmospheric composition sensors such as TROPOMI is capable of providing spectra of high spatial and spectral resolution. To process this vast amount of spectral information, fast radiative transfer models (RTMs) are required. In this regard, we analyzed the efficiency of two acceleration techniques based on the principal component analysis (PCA) for simulating the Hartley-Huggins band spectra. In the first one, the PCA is used to map the data set of optical properties of the atmosphere to a lower-dimensional subspace, in which the correction function for an approximate but fast RTM is derived. The second technique is based on the dimensionality reduction of the data set of spectral radiances. Once the empirical orthogonal functions are found, the whole spectrum can be reconstructed by performing radiative transfer computations only for a specific subset of spectral points. We considered a clear-sky atmosphere where the optical properties are defined by Rayleigh scattering and trace gas absorption. Clouds can be integrated into the model as Lambertian reflectors. High computational performance is achieved by combining both techniques without losing accuracy. We found that for the Hartley-Huggins band, the combined use of these techniques yields an accuracy better than 0.05% while the speedup factor is about 20. This innovative combination of both PCA-based techniques can be applied in future works as an efficient approach for simulating the spectral radiances in other spectral regions.
Keywords