Technologies (Aug 2023)

Deep Learning Techniques for Web-Based Attack Detection in Industry 5.0: A Novel Approach

  • Abdu Salam,
  • Faizan Ullah,
  • Farhan Amin,
  • Mohammad Abrar

DOI
https://doi.org/10.3390/technologies11040107
Journal volume & issue
Vol. 11, no. 4
p. 107

Abstract

Read online

As the manufacturing industry advances towards Industry 5.0, which heavily integrates advanced technologies such as cyber-physical systems, artificial intelligence, and the Internet of Things (IoT), the potential for web-based attacks increases. Cybersecurity concerns remain a crucial challenge for Industry 5.0 environments, where cyber-attacks can cause devastating consequences, including production downtime, data breaches, and even physical harm. To address this challenge, this research proposes an innovative deep-learning methodology for detecting web-based attacks in Industry 5.0. Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformer models are examples of deep learning techniques that are investigated in this study for their potential to effectively classify attacks and identify anomalous behavior. The proposed transformer-based system outperforms traditional machine learning methods and existing deep learning approaches in terms of accuracy, precision, and recall, demonstrating the effectiveness of deep learning for intrusion detection in Industry 5.0. The study’s findings showcased the superiority of the proposed transformer-based system, outperforming previous approaches in accuracy, precision, and recall. This highlights the significant contribution of deep learning in addressing cybersecurity challenges in Industry 5.0 environments. This study contributes to advancing cybersecurity in Industry 5.0, ensuring the protection of critical infrastructure and sensitive data.

Keywords