Bioengineering (Sep 2024)
Deep Learning-Based Fine-Tuning Approach of Coarse Registration for Ear–Nose–Throat (ENT) Surgical Navigation Systems
Abstract
Accurate registration between medical images and patient anatomy is crucial for surgical navigation systems in minimally invasive surgeries. This study introduces a novel deep learning-based refinement step to enhance the accuracy of surface registration without disrupting established workflows. The proposed method integrates a machine learning model between conventional coarse registration and ICP fine registration. A deep-learning model was trained using simulated anatomical landmarks with introduced localization errors. The model architecture features global feature-based learning, an iterative prediction structure, and independent processing of rotational and translational components. Validation with silicon-masked head phantoms and CT imaging compared the proposed method to both conventional registration and a recent deep-learning approach. The results demonstrated significant improvements in target registration error (TRE) across different facial regions and depths. The average TRE for the proposed method (1.58 ± 0.52 mm) was significantly lower than that of the conventional (2.37 ± 1.14 mm) and previous deep-learning (2.29 ± 0.95 mm) approaches (p < 0.01). The method showed a consistent performance across various facial regions and enhanced registration accuracy for deeper areas. This advancement could significantly enhance precision and safety in minimally invasive surgical procedures.
Keywords