Information (Sep 2024)
Word Sense Disambiguation for Morphologically Rich Low-Resourced Languages: A Systematic Literature Review and Meta-Analysis
Abstract
In natural language processing, word sense disambiguation (WSD) continues to be a major difficulty, especially for low-resource languages where linguistic variation and a lack of data make model training and evaluation more difficult. The goal of this comprehensive review and meta-analysis of the literature is to summarize the body of knowledge regarding WSD techniques for low-resource languages, emphasizing the advantages and disadvantages of different strategies. A thorough search of several databases for relevant literature produced articles assessing WSD methods in low-resource languages. Effect sizes and performance measures were extracted from a subset of trials through analysis. Heterogeneity was evaluated using pooled effect and estimates were computed by meta-analysis. The preferred reporting elements for systematic reviews and meta-analyses (PRISMA) were used to develop the process for choosing the relevant papers for extraction. The meta-analysis included 32 studies, encompassing a range of WSD methods and low-resourced languages. The overall pooled effect size indicated moderate effectiveness of WSD techniques. Heterogeneity among studies was high, with an I2 value of 82.29%, suggesting substantial variability in WSD performance across different studies. The (τ2) tau value of 5.819 further reflects the extent of between-study variance. This variability underscores the challenges in generalizing findings and highlights the influence of diverse factors such as language-specific characteristics, dataset quality, and methodological differences. The p-values from the meta-regression (0.454) and the meta-analysis (0.440) suggest that the variability in WSD performance is not statistically significantly associated with the investigated moderators, indicating that the performance differences may be influenced by factors not fully captured in the current analysis. The absence of significant p-values raises the possibility that the problems presented by low-resource situations are not yet well addressed by the models and techniques in use.
Keywords