eLife (Jan 2017)

Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior

  • Caleb N Fischer,
  • Eric P Trautman,
  • Jason M Crawford,
  • Eric V Stabb,
  • Jo Handelsman,
  • Nichole A Broderick

DOI
https://doi.org/10.7554/eLife.18855
Journal volume & issue
Vol. 6

Abstract

Read online

Animals host multi-species microbial communities (microbiomes) whose properties may result from inter-species interactions; however, current understanding of host-microbiome interactions derives mostly from studies in which elucidation of microbe-microbe interactions is difficult. In exploring how Drosophila melanogaster acquires its microbiome, we found that a microbial community influences Drosophila olfactory and egg-laying behaviors differently than individual members. Drosophila prefers a Saccharomyces-Acetobacter co-culture to the same microorganisms grown individually and then mixed, a response mainly due to the conserved olfactory receptor, Or42b. Acetobacter metabolism of Saccharomyces-derived ethanol was necessary, and acetate and its metabolic derivatives were sufficient, for co-culture preference. Preference correlated with three emergent co-culture properties: ethanol catabolism, a distinct volatile profile, and yeast population decline. Egg-laying preference provided a context-dependent fitness benefit to larvae. We describe a molecular mechanism by which a microbial community affects animal behavior. Our results support a model whereby emergent metabolites signal a beneficial multispecies microbiome.

Keywords