Energies (Feb 2024)

Investigating the Effect of Albedo in Simulation-Based Floating Photovoltaic System: 1 MW Bifacial Floating Photovoltaic System Design

  • Atıl Emre Cosgun,
  • Hasan Demir

DOI
https://doi.org/10.3390/en17040959
Journal volume & issue
Vol. 17, no. 4
p. 959

Abstract

Read online

Photovoltaic (PV) modules have emerged as a promising technology in the realm of sustainable energy solutions, specifically in the harnessing of solar energy. Photovoltaic modules, which use solar energy to generate electricity, are often used on terrestrial platforms. In recent years, there has been an increasing inclination towards the installation of photovoltaic (PV) modules over water surfaces, including lakes, reservoirs, and even oceans. The novel methodology introduces distinct benefits and complexities, specifically pertaining to the thermal characteristics of the modules. In order to accomplish this objective, a photovoltaic (PV) module system with a capacity of 1 MW was developed as a scenario in the PVsyst Program. The scenario simulation was conducted on the Mamasın Dam, situated in the Gökçe village within the Aksaray province. To conduct the efficiency analysis, a comparative evaluation was conducted between bifacial and monofacial modules, which were installed from above the water at 1 m. The comparison was made considering two different types of modules. Additionally, the albedo effect, water saving amount, and CO2 emissions of the system were also investigated. Albedo measurements were made in summer when the PV power plant will operate most efficiently. As a result of the simulations, it was found that bifacial modules produce 12.4% more energy annually than monofacial modules due to the albedo effect. It is estimated that PV power plant installation will save 19,562.695 and 17,253.475 tons of CO2 emissions in bifacial and monofacial systems, respectively.

Keywords