Engineering (Apr 2019)

Development of and Perspective on High-Performance Nanostructured Bainitic Bearing Steel

  • Fucheng Zhang,
  • Zhinan Yang

Journal volume & issue
Vol. 5, no. 2
pp. 319 – 328

Abstract

Read online

Bearings are the most important component of nearly all mechanical equipment, as they guarantee the steady running of the equipment, which is especially important for high-end equipment such as high-speed trains and shield tunneling machines. Requirements regarding the quality of bearings are increasing with the rapid development in technology. A country’s bearings manufacturing level directly reflects the level of that country’s steel metallurgy and machinery manufacturing. The performance of the bearing steel is the critical factor that determines the quality of a bearing. The development of new bearing steel with higher performance is the ambition of material researchers and the expectation of the manufacturing industry. Many famous bearing manufacturing enterprises are competing to develop the new generation of bearing steel. Nanostructured bainitic bearing steel (NBBS), which is a newly developed bearing steel, not only possesses high strength and toughness, but also exhibits excellent wear resistance and rolling contact fatigue (RCF) resistance. In recent years, relevant achievements in NBBS in China have led to significant progress in this field. NBBS was first used in China to manufacture large bearings for wind turbines and heavy-duty bearings, with excellent performance. As a result, NBBS and its corresponding heat-treatment process have been included in the national and industry standards for the first time. The bearing industry considers the exploitation of NBBS to be epoch-making, and has termed this kind of bearing as the second generation of bainitic bearing. In this paper, the development of NBBS is reviewed in detail, including its advantages and disadvantages. Further research directions for NBBS are also proposed. Keywords: Nanostructured bainitic bearing steel, Bearing steel, Nanostructured bainite, Development